knitr::opts_chunk$set(echo = TRUE)
Here you can find the number and identity of species at all spatial extents, localities and ecoregions. We also show here which species are shared between ecoregions and localities.
We also show maximum, minimum, and mean values of each environmental variable considered in all analyses at all spatial extents, localities and ecoregions. \ \ \
First we need preparare all data matrices from the main dataset. These are prepared sourcing the "Loading_data.R" file in the Auxiliary Scripts folder.
library(AtlanticForestMetacommunity) source("Loading_data.R")
devtools::load_all() source("C:/Users/rodol/OneDrive/Trabalho/Papers/Analysis/AtlanticForestMetacommunity/Auxiliary Scripts/Loading_data.R")
ncol(Broad_pa_orig)
\
\
ncol(DRF_pa_orig)
\
ncol(SSF_pa_orig)
\
\
ncol(ST_pa_orig)
\
ncol(IC_pa_orig)
\
ncol(NI_pa_orig)
\
ncol(MD_pa_orig)
\
ncol(JA_pa_orig)
\
ncol(UBA_pa_orig)
\
ncol(BER_pa_orig)
\
ncol(ITA_pa_orig)
\
\
\
\
\
sp_comm <- na.omit(match(colnames(DRF_pa_orig), colnames(SSF_pa_orig))) length(sp_comm) colnames(SSF_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(ST_pa_orig), colnames(IC_pa_orig))) length(sp_comm) colnames(IC_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(ST_pa_orig), colnames(NI_pa_orig))) length(sp_comm) colnames(NI_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(ST_pa_orig), colnames(MD_pa_orig))) length(sp_comm) colnames(MD_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(ST_pa_orig), colnames(JA_pa_orig))) length(sp_comm) colnames(JA_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(IC_pa_orig), colnames(NI_pa_orig))) length(sp_comm) colnames(NI_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(IC_pa_orig), colnames(MD_pa_orig))) length(sp_comm) colnames(MD_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(IC_pa_orig), colnames(JA_pa_orig))) length(sp_comm) colnames(JA_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(NI_pa_orig), colnames(MD_pa_orig))) length(sp_comm) colnames(MD_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(NI_pa_orig), colnames(JA_pa_orig))) length(sp_comm) colnames(JA_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(MD_pa_orig), colnames(JA_pa_orig))) length(sp_comm) colnames(JA_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(UBA_pa_orig), colnames(BER_pa_orig))) length(sp_comm) colnames(BER_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(UBA_pa_orig), colnames(ITA_pa_orig))) length(sp_comm) colnames(ITA_pa_orig)[sp_comm]
\
\
sp_comm <- na.omit(match(colnames(ITA_pa_orig), colnames(BER_pa_orig))) length(sp_comm) colnames(BER_pa_orig)[sp_comm]
\
\
\
\
\
\
data.frame(DRF_min = apply(DRF_clim, 2, min), DRF_mean = apply(DRF_clim, 2, mean), DRF_max = apply(DRF_clim, 2, max)) data.frame(DRF_min = apply(DRF_env, 2, min), DRF_mean = apply(DRF_env, 2, mean), DRF_max = apply(DRF_env, 2, max))
\
data.frame(SSF_min = apply(SSF_clim, 2, min), SSF_mean = apply(SSF_clim, 2, mean), SSF_max = apply(SSF_clim, 2, max)) data.frame(SSF_min = apply(SSF_env, 2, min), SSF_mean = apply(SSF_env, 2, mean), SSF_max = apply(SSF_env, 2, max))
\
\
data.frame(ST_min = apply(ST_env, 2, min), ST_mean = apply(ST_env, 2, mean), ST_max = apply(ST_env, 2, max))
\
data.frame(IC_min = apply(IC_env, 2, min), IC_mean = apply(IC_env, 2, mean), IC_max = apply(IC_env, 2, max))
\
data.frame(NI_min = apply(NI_env, 2, min), NI_mean = apply(NI_env, 2, mean), NI_max = apply(NI_env, 2, max))
\
data.frame(MD_min = apply(MD_env, 2, min), MD_mean = apply(MD_env, 2, mean), MD_max = apply(MD_env, 2, max))
\
data.frame(JA_min = apply(JA_env, 2, min), JA_mean = apply(JA_env, 2, mean), JA_max = apply(JA_env, 2, max))
\
data.frame(UBA_min = apply(UBA_env, 2, min), UBA_mean = apply(UBA_env, 2, mean), UBA_max = apply(UBA_env, 2, max))
\
data.frame(BER_min = apply(BER_env, 2, min), BER_mean = apply(BER_env, 2, mean), BER_max = apply(BER_env, 2, max))
\
data.frame(ITA_min = apply(ITA_env, 2, min), ITA_mean = apply(ITA_env, 2, mean), ITA_max = apply(ITA_env, 2, max))
\
\
\
\
\
Int_Clim_cv <- data.frame(DRF_cv = apply(DRF_clim, 2, coef_var), SSF_cv = apply(SSF_clim, 2, coef_var)) Int_Env_cv <- data.frame(DRF_cv = apply(DRF_env, 2, coef_var), SSF_cv = apply(SSF_env, 2, coef_var)) Int_Clim_cv Int_Env_cv apply(Int_Clim_cv, 2, mean) apply(Int_Env_cv, 2, mean)
\
\
UBA_cv <- c(apply(UBA_env, 2, coef_var), nvt = NA) BER_cv <- c(apply(BER_env, 2, coef_var), nvt = NA) ITA_cv <- c(apply(ITA_env, 2, coef_var), dist_to_forest = NA) ST_cv <- c(apply(ST_env, 2, coef_var), canopy_cover = NA) IC_cv <- c(apply(IC_env, 2, coef_var), canopy_cover = NA) NI_cv <- c(apply(NI_env, 2, coef_var), canopy_cover = NA) MD_cv <- c(apply(MD_env, 2, coef_var)) JA_cv <- c(apply(JA_env, 2, coef_var)) UBA_cv <- UBA_cv[order(names(UBA_cv))] BER_cv <- BER_cv[order(names(BER_cv))] ITA_cv <- ITA_cv[order(names(ITA_cv))] ST_cv <- ST_cv[order(names(ST_cv))] IC_cv <- IC_cv[order(names(IC_cv))] NI_cv <- NI_cv[order(names(NI_cv))] MD_cv <- MD_cv[order(names(MD_cv))] JA_cv <- JA_cv[order(names(JA_cv))] Sm_Env_cv <- data.frame(UBA_cv,BER_cv,ITA_cv,ST_cv,IC_cv,NI_cv,MD_cv,JA_cv) Sm_Env_cv apply(na.omit(Sm_Env_cv), 2, mean)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.